skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Borer, Elizabeth_T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Anthropogenic activities add more reactive nitrogen (N) to the environment than all natural sources combined, and the fate of this N is of environmental concern. If N that is deposited on terrestrial ecosystems through atmospheric deposition is retained in plant tissues or soil organic matter, it could stimulate carbon (C) storage in plant biomass or soils. However, added N also could increase soil inorganic N concentrations and leaching, potentially polluting watersheds, particularly in areas with low-N soils and/or a high propensity for leaching, such as sandy or arid areas. Here, we assessed N allocation and retention across a 13-year experimental N addition gradient in a temperate grassland. We found that N accumulation decreased significantly at mid- to high levels of N addition compared to the Control, such that ecosystem N pools were equivalent across a 10 g m−2 year−1range of annual N addition rates (0–10 g N m−2 year−1), which spans most of the global range of N deposition. Nitrogen addition increased plant tissue percent N, but the total pool of N did not increase because of reduced plant biomass, particularly in roots. Nitrogen addition also increased soil inorganic N concentrations. Our results indicate that N addition is unlikely to increase grassland N pools, particularly in sandy or low-fertility ecosystems with a high potential for leaching because high application rates lead to N saturation, and additional inputs are lost. 
    more » « less
  2. Abstract Foliar endophytes play crucial roles in large-scale ecosystem functions such as plant productivity, decomposition, and nutrient cycling. While the possible effects of environmental nutrient supply on the growth and carbon use of endophytic microbes have critical implications for these processes, these impacts are not fully understood. Here, we examined the effects of long-term elevated nitrogen, phosphorus, potassium, and micronutrient (NPKμ) supply on culturable bacterial and fungal foliar endophytes inhabiting the prairie grass Andropogon gerardii. We hypothesized that elevated soil nutrients alter the taxonomic composition and carbon use phenotypes of foliar endophytes and significantly shift the potential for resource competition among microbes within leaves. We observed changes in taxonomic composition and carbon use patterns of fungal, but not bacterial, endophytes of A. gerardii growing in NPKμ-amended versus ambient conditions. Fungal endophytes from NPKμ-amended plants had distinct carbon use profiles and demonstrated greater specialization across carbon sources compared to control plots. Resource niche overlap between bacterial and fungal endophytes also increased with plot nutrient supply, suggesting enhanced potential for inter-kingdom competition. Collectively, this work suggests that soil nutrient enrichment alters how fungal endophyte communities exist in the foliar environment, with potentially significant implications for broad-scale ecosystem function. 
    more » « less
  3. ABSTRACT Biotic complexity, encompassing both competitive interactions within trophic levels and consumptive interactions among trophic levels, plays a fundamental role in maintaining ecosystem stability. While theory and experiments have established that plant diversity enhances ecosystem stability, the role of consumers in the diversity–stability relationships remains elusive. In a decade‐long grassland biodiversity experiment, we investigated how heterotrophic consumers (e.g., insects and fungi) interact with plant diversity to affect the temporal stability of plant community biomass. Plant diversity loss reduces community stability due to increased synchronisation among species but enhances the population‐level stability of the remaining plant species. Reducing trophic complexity via pesticide treatments does not directly affect either community‐ or population‐level stability but further amplifies plant species synchronisation. Our findings demonstrate that the loss of arthropod or fungal consumers can destabilise plant communities by exacerbating synchronisation, underscoring the crucial role of trophic complexity in maintaining ecological stability. 
    more » « less
  4. Abstract Food has long been known to perform dual functions of nutrition and medicine, but mounting evidence suggests that complex host‐pathogen dynamics can emerge along continuous resource gradients. Empirical examples of nonmonotonic responses of infection with increasing host resources (e.g., low prevalence at low and high resource supply but high prevalence at intermediate resources) have been documented across the tree of life, but these dynamics, when observed, often are interpreted as nonintuitive, idiosyncratic features of pathogen and host biology. Here, by developing generalized versions of existing models of resource dependence for within‐ and among‐host infection dynamics, we provide a synthetic view of nonmonotonic infection dynamics. We demonstrate that where resources jointly impact two (or more) processes (e.g., growth, defense, transmission, mortality, predation), nonmonotonic infection dynamics, including alternative states, can emerge across a continuous resource supply gradient. We review the few empirical examples that concurrently measured resource effects on multiple rates and pair this with a wide range of examples in which resource dependence of multiple rates could generate nonmonotonic infection outcomes under realistic conditions. This review and generalized framework highlight the likely generality of such resource effects in natural systems and point to opportunities ripe for future empirical and theoretical work. 
    more » « less
  5. Abstract Forbs (“wildflowers”) are important contributors to grassland biodiversity but are vulnerable to environmental changes. In a factorial experiment at 94 sites on 6 continents, we test the global generality of several broad predictions: (1) Forb cover and richness decline under nutrient enrichment, particularly nitrogen enrichment. (2) Forb cover and richness increase under herbivory by large mammals. (3) Forb richness and cover are less affected by nutrient enrichment and herbivory in more arid climates, because water limitation reduces the impacts of competition with grasses. (4) Forb families will respond differently to nutrient enrichment and mammalian herbivory due to differences in nutrient requirements. We find strong evidence for the first, partial support for the second, no support for the third, and support for the fourth prediction. Our results underscore that anthropogenic nitrogen addition is a major threat to grassland forbs, but grazing under high herbivore intensity can offset these nutrient effects. 
    more » « less
  6. Abstract Nutrient availability and grazing are known as main drivers of grassland plant diversity, and increased nutrient availability and long‐term cessation of grazing often decrease local‐scale plant diversity. Experimental tests of mechanisms determining plant diversity focus mainly on vascular plants (VP), whereas non‐vascular plants (NVP, here bryophytes) have been ignored. It is therefore not known how the current models based on VPs predict the rates of total (NVP + VP) losses in plant diversity.Here we used plant community data, including VPs and NVPs, from nine sites in Europe and North America and belonging to the Nutrient Network experiment, to test whether neglecting NVPs leads to biased estimates of plant diversity loss rates. The plant communities were subjected to factorial addition of nitrogen (N), phosphorus (P), potassium with micronutrients (K), as well as a grazing exclusion combined with multi‐nutrient fertilization (NPK) treatment.We found that nutrient additions reduced both NVP and VP species richness, but the effects on NVP species richness were on average stronger than on VPs: NVP species richness decreased 67%, while VP species richness decreased 28%, causing their combined richness to decrease 38% in response to multi‐nutrient (NPK) fertilization. Thus, VP diversity alone underestimated total plant diversity loss by 10 percentage points.Although NVP and VP species diversities similarly declined in response to N and NPKfertilizations, the evenness of NVPs increased and that of VPs remained unchanged. NP, NPKfertilization and NPKfertilization combined with grazing exclusion, associated with decreasing light availability at ground level, led to the strongest loss of NVP species or probability of NVP presence. However, grazing did not generally mitigate the fertilization effects.Synthesis. In nine grassland sites in Europe and North America, nutrient addition caused a larger relative decline in non‐vascular plant (NVP) than vascular plant species richness. Hence, not accounting for NVPs can lead to underestimation of losses in plant diversity in response to continued nutrient pollution of grasslands. 
    more » « less
  7. ABSTRACT AimsThe community composition of native and alien plant species is influenced by the environment (e.g., nutrient addition and changes in temperature or precipitation). A key objective of our study is to understand how differences in the traits of alien and native species vary across diverse environmental conditions. For example, the study examines how changes in nutrient availability affect community composition and functional traits, such as specific leaf area and plant height. Additionally, it seeks to assess the vulnerability of high‐nutrient environments, such as grasslands, to alien species colonization and the potential for alien species to surpass natives in abundance. Finally, the study explores how climatic factors, including temperature and precipitation, modulate the relationship between traits and environmental conditions, shaping species success. LocationIn our study, we used data from a globally distributed experiment manipulating nutrient supplies in grasslands worldwide (NutNet). MethodsWe investigate how temporal shifts in the abundance of native and alien species are influenced by species‐specific functional traits, including specific leaf area (SLA) and leaf nutrient concentrations, as well as by environmental conditions such as climate and nutrient treatments, across 17 study sites. Mixed‐effects models were used to assess these relationships. ResultsAlien and native species increasing in their abundance did not differ in their leaf traits. We found significantly lower specific leaf area (SLA) with an increase in mean annual temperature and lower leaf Potassium with mean annual precipitation. For trait–environment relationships, when compared to native species, successful aliens exhibited an increase in leaf Phosphorus and a decrease in leaf Potassium with an increase in mean annual precipitation. Finally, aliens' SLA decreased in plots with higher mean annual temperatures. ConclusionsTherefore, studying the relationship between environment and functional traits may portray grasslands' dynamics better than focusing exclusively on traits of successful species, per se. 
    more » « less
  8. ABSTRACT Accurately representing the relationships between nitrogen supply and photosynthesis is crucial for reliably predicting carbon–nitrogen cycle coupling in Earth System Models (ESMs). Most ESMs assume positive correlations amongst soil nitrogen supply, leaf nitrogen content, and photosynthetic capacity. However, leaf photosynthetic nitrogen demand may influence the leaf nitrogen response to soil nitrogen supply; thus, responses to nitrogen supply are expected to be the largest in environments where demand is the greatest. Using a nutrient addition experiment replicated across 26 sites spanning four continents, we demonstrated that climate variables were stronger predictors of leaf nitrogen content than soil nutrient supply. Leaf nitrogen increased more strongly with soil nitrogen supply in regions with the highest theoretical leaf nitrogen demand, increasing more in colder and drier environments than warmer and wetter environments. Thus, leaf nitrogen responses to nitrogen supply are primarily influenced by climatic gradients in photosynthetic nitrogen demand, an insight that could improve ESM predictions. 
    more » « less
  9. Abstract Nutrient enrichment impacts grassland plant diversity such as species richness, functional trait composition and diversity, but whether and how these changes affect ecosystem stability in the face of increasing climate extremes remains largely unknown.We quantified the direct and diversity‐mediated effects of nutrient addition (by nitrogen, phosphorus, and potassium) on the stability of above‐ground biomass production in 10 long‐term grassland experimental sites. We measured five facets of stability as the temporal invariability, resistance during and recovery after extreme dry and wet growing seasons.Leaf traits (leaf carbon, nitrogen, phosphorus, potassium, and specific leaf area) were measured under ambient and nutrient addition conditions in the field and were used to construct the leaf economic spectrum (LES). We calculated functional trait composition and diversity of LES and of single leaf traits. We quantified the contribution of intraspecific trait shifts and species replacement to change in functional trait composition as responses to nutrient addition and its implications for ecosystem stability.Nutrient addition decreased functional trait diversity and drove grassland communities to the faster end of the LES primarily through intraspecific trait shifts, suggesting that intraspecific trait shifts should be included for accurately predicting ecosystem stability. Moreover, the change in functional trait diversity of the LES in turn influenced different facets of stability. That said, these diversity‐mediated effects were overall weak and/or overwhelmed by the direct effects of nutrient addition on stability. As a result, nutrient addition did not strongly impact any of the stability facets. These results were generally consistent using individual leaf traits but the dominant pathways differed. Importantly, major influencing pathways differed using average trait values extracted from global trait databases (e.g. TRY).Synthesis. Investigating changes in multiple facets of plant diversity and their impacts on multidimensional stability under global changes such as nutrient enrichment can improve our understanding of the processes and mechanisms maintaining ecosystem stability. 
    more » « less
  10. Abstract The plant microbiome can affect host function in many ways and characterizing the ecological factors that shape endophytic (microbes living inside host plant tissues) community diversity is a key step in understanding the impacts of environmental change on these communities. Phylogenetic relatedness among members of a community offers a way of quantifying phylogenetic diversity of a community and can provide insight into the ecological factors that shape endophyte microbiomes. We examined the effects of experimental nutrient addition and herbivory exclusion on the phylogenetic diversity of foliar fungal endophyte communities of the grass speciesAndropogon gerardiiat four sites in the Great Plains of the central USA. Using amplicon sequencing, we characterized the effects of fertilization and herbivory on fungal community phylogenetic diversity at spatial scales that spanned within‐host to between sites across the Great Plains. Despite increasing fungal diversity and richness, at larger spatial scales, fungal microbiomes were composed of taxa showing random phylogenetic associations. Phylogenetic diversity did not differ systematically when summed across increasing spatial scales from a few meters within plots to hundreds of kilometers among sites. We observed substantial shifts in composition across sites, demonstrating distinct but similarly diverse fungal communities were maintained within sites across the region. In contrast, at the scale of within leaves, fungal communities tended to be comprised of closely related taxa regardless of the environment, but there were no shifts in phylogenetic composition among communities. We also found that nutrient addition (fertilization) and herbivory have varying effects at different sites. These results suggest that the direction and magnitude of the outcomes of environmental modifications likely depend on the spatial scale considered, and can also be constrained by regional site differences in microbial diversity and composition. 
    more » « less